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Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem,
but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from
137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most
recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus
present in European and South American hunter-gatherers during the early Holocene. After the European
Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers
that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium
BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears
to have reemerged during the HIV pandemic.

T
he World Health Organization (WHO)
estimates that in 2015, 257 million people
were livingwith chronic hepatitis B virus
(HBV) infection, which causes close to
1 million deaths each year (1). HBV is

transmitted through contact with bodily fluids,

mainly in sexual and perinatal contexts (2), and
has no known environmental or animal res-
ervoir. Its spread is therefore tightly linked
to the dispersal of humans, whose past popu-
lation dynamics and migrations have likely
shaped the genetic diversity of this partially

double-strandedDNA virus, which is currently
classified into nine genotypes associated with
characteristic ethno-geographic ranges (Fig. 1)
(3, 4). However, the temporal and geographic
context of HBV origins in humans, as well as
its major routes of dissemination in the past,
remain widely debated (5–10). Recent studies
have retrieved HBV DNA from archaeological
human remains (11–16), providing new avenues
to address questions about HBV evolution and
phylogeographic history. In particular, these
studies revealed the presence of HBV in Europe
as early as the Neolithic and ancient HBV line-
ages that are now seemingly extinct. Ancient
DNA data permits molecular clock calibration,
and the time to the most recent common
ancestor (tMRCA) of all known HBV lineages
has been dated to between ~21 thousand years
ago (ka) and ~9 ka (14). However, the extent of
the past diversity of this virus remains gen-
erally unknown because only 19 ancient HBV
genomes with a limited temporal and geo-
graphic distribution have been reconstructed
to date.

The MRCA of all known HBV lineages

Here, we report genomic evidence of HBV in
the skeletal remains of 137 individuals from
Eurasia and the Americas dated to between
~10,500 and ~400 years ago (Fig. 1, fig. S1 and
data S1). Despite advances in molecular viro-
logy and numerous sequences from present-
day HBV genomes, assessing the phylogenetic
relationships among HBV genotypes has pro-
ven challenging (7, 17–20), and doubts have been
cast about its evolutionary rate and molecular
clock–like behavior (9, 16, 21). Nevertheless,
most HBV phylogenetic reconstructions have
recovered a topology in which HBV genotypes
typically found in Native Americans (geno-
types F and H) represent a sister clade to the
rest of worldwide HBV diversity (which we
refer to as the Eurasian branch) (18). This to-
pology was supported by a study incorporating
12 ancient HBV genomes (14) and was also re-
constructed in this work (Fig. 2 and figs. S2 and
S3). Inparticular, themonophylyof theAmerican
HBV branch, comprising all ancient genomes
from the Americas dating back to as early as
~9 ka from the Cuncaicha rock shelter in the
Andean highlands (CUN002), was highly sup-
ported. However, deep nodes within the Eura-
sian branch were not well resolved, pointing to
plausible alternative topologies in which some
of the earliest Eurasian lineages would have
diverged before the American branch (figs. S4
and S5) (22). Our results confirm that HBV
genomic data do exhibit a clear temporal struc-
ture when incorporating samples spanning
several thousand years (fig. S3). Using the best-
fitting uncorrelated relaxed clock model, we
estimate the tMRCA of HBV, corresponding to
the divergence of American and Eurasian HBV
branches, to be between ~16 and ~12 ka [95%
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highest posterior density (HPD)] (table S1),
which is within the range of previous find-
ings (14). This suggests that contacts between
ancestral Eurasians and First Americans oc-
curred until at least shortly before the Bølling-
Allerød interstadial (~15 to 13 ka), a period of
warming corresponding to widespread human
expansion in North America (23, 24). However,
studies of ancient human genomes indicate
that the ancestors of the First Americans likely
began diverging from their closest Eurasian
relatives between ~25 and 18 ka, possibly re-

flecting an extended isolation in a Beringian
refugium during the Last Glacial Maximum,
before dispersing into and across the Americas
(25–27). The use of a time-dependent rate
(TDR) model yielded an estimate of ~20 to
17 ka for the HBV tMRCA (95% HPD), which
was more consistent in this regard. This sug-
gests that not accounting for the time depen-
dency of the evolutionary rate may have led to
an underestimation of deep divergence times.
However, model selection favored the use of a
relaxed clock over a TDR model (log BF: 405)

(22). Taken together, these results point to a
scenario inwhich theMRCAof all HBV strains
examined to date existed around the end of
the Pleistocene and gave rise to one or several
lineages that spread across Eurasia and even-
tually reached Africa and Oceania, and to
another lineage that spread into the Amer-
icas with early settlers of this continent.
Our findings challenge the view that current

HBV diversity reflects early human dispersals
out of Africa. This model is supported in par-
ticular by the exclusive association of HBV
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subgenotype C4with the Aboriginal people of
Australia, suggesting that this subgenotype
may have been carried by the first settlers of
Australia at least ~50 ka (5, 20). Instead, in
accordance with previous findings (14), our
results indicate that all known modern and
ancient HBV strains descend from a lineage
that began to diversify at a more recent stage
of human history and that subgenotype C4
was introduced in the Australian continent
after ~4.5 ka (Fig. 2). Nevertheless, the age of
the observed MRCA only represents a lower
limit for the earliest presence of HBV in hu-
mans. Whether the latter has been preceded
by long coevolution, a recent spillover from
another animal species, or any intermediate
scenario remains an open question. Other vi-
ruses from theHepadnaviridae familyhave been
recovered from a wide range of vertebrates, but
none of them appear to represent an ancestral
zoonotic source for the human HBV (8).

HBV circulated widely in western Eurasia as
early as 10 ka
The retrieval of HBV genomes from around
10 ka in different parts of Europe and Anatolia
indicates that the virus was widespread in
western Eurasia at that time (Fig. 1 and fig.
S1). The oldest HBV strains recovered in
Europe form two distinct clades (Fig. 2, fig.
S2, and table S2): one that was found in
three hunter-gatherers (HGs) from north-
western Russia, Belgium, and Doggerland
(Mesolithic 1) and another that was found in
an HG from western Russia (Mesolithic 2).
These two lineages are placed within the Eur-
asian branch as sister groups to the modern
strains found in nonhuman primates (NHPs)
from Southeast Asia and Africa, respectively.
The position of NHP HBV lineages within
human HBV diversity has been observed in
most previous phylogenetic reconstructions
and is thought to reflect spillover events from

humans toNHPs (7, 22, 28). TheHBV genome
reconstructed from an early Anatolian farm-
er forms a separate lineage recovered at a
phylogenetic position intermediate to the
two EuropeanMesolithic clades. Between ~9
and 7.5 ka, HBV strains found in HGs from
Karelia (northwestern Russia), Sweden, Lux-
embourg, and Sicily all belonged to the
Mesolithic 2 clade. Thus, although our data
do not allow detailed phylogeographic infer-
ence, they suggest that during the early Holo-
cene, HBV strains could spread over large
parts of western Eurasia within a few thou-
sand years. This is consistent with evidence of
genetic connections between Europe and the
Near East that predate the Neolithic tran-
sition (29, 30) and with the observed genetic
cline from Western to Eastern HGs (31). Our
results further highlight that Mesolithic pop-
ulations likely formed a network through
which pathogens could spread.
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Fig. 1. Geographic location, time period, and lineage of ancient HBV genomes. (A and B) Lineages from (A) Eurasia and (B) the Americas. (C) Main distribution
of present-day HBV genotypes [adapted from (4, 14)].

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at M

ax Planck Society on O
ctober 11, 2021



It has been suggested that most human-
adapted pathogens emerged after the Neolithic
transition in association with sedentary life-
styles, increased contact with domesticated
animals, and higher population densities, a
phenomenon sometimes referred to as the
“first epidemiological transition” (32–34). Our
finding of widespread HBV inHG populations
indicates that HBV was present before the
advent of agriculture and animal husbandry
in different parts of the world. Today, HBV
rarely causes lethal fulminant hepatitis but
rather asymptomatic infections thatmay evolve
into chronic forms, sometimes developing in-
to liver complications and possible liver fail-
ure after decades of infection (1, 2). Although
it is difficult to extrapolate from present-day
medical studies what the clinical impact of
a pathogen would have been in the past—
given different diets, disease burdens, and
life expectancies—the virus has likely exhib-
ited similar pathophysiological features. Con-
sequently, our findings are consistent with

the view that although small HG communities
could not sustain highly epidemic “crowd”
diseases, they could maintain chronic infec-
tious agents (35, 36).

A replacement of HBV diversity occurred with
the Neolithic transition in Europe

Our data show that HBV remained wide-
spread in Europe after the Neolithic transition
(8 to 7 ka), with numerous strains recovered
from early European farmers (EEF) across the
continent (Fig. 3, fig. S1, and data S1). All of
these strains belong to a single HBV lineage
that does not descend from previously ob-
served Mesolithic strains (Figs. 2 and 3 and
fig. S2). We refer to this HBV lineage as the
Western-Eurasian Neolithic–to–Bronze Age
(WENBA) lineage. This transition is also ob-
servable at a microscale in Grotta dell’Uzzo
(Sicily), where HBV strains recovered from
Neolithic individuals are unrelated to a Late
Mesolithic strain identified at the same site
(figs. S1 and S2). This suggests that the HBV

strains observed in EEFs were not acquired
from local HGs in different areas but were
rather disseminated by EEFs themselves. Al-
though EEFs ultimately derived from early ag-
ricultural populations in the Near East (37, 38),
the strain we retrieved from an Anatolian
farmer dated to ~10 ka was not ancestral to
the WENBA lineage (Fig. 2). Therefore, even
if EEFs were indeed key in disseminating
WENBA strains, whether this lineage origi-
nated in Near Eastern centers of early agri-
culture or in another location along EEF’s
expansion routes remains to be determined.
Furthermore, given the current sample avail-
ability for this period, a scenario in which the
WENBA lineage would have originated and
disseminated among European HGs shortly
before the Neolithic transition cannot be com-
pletely excluded.
We also found WENBA HBV strains in two

HGs from transitional Neolithic contexts in
western Russia dated to ~7.2 and ~6.4 ka
(JAZ001 and MUR007), as well as on both
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Fig. 2. HBV phylogeny and genetic profile of infected individuals. (A) Time-
calibrated phylogenetic tree of HBV obtained by using a skyline coalescent
tree prior and a lognormal relaxed clock. Main clades were collapsed and
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number of ancient genomes they contain. Posterior node supports and
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modern and ancient western Eurasians summarizing the genetic variation of
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are colored according to the lineage of the HBV strain they carried, as in
the tree.
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sides of the Greater Caucasus Mountain range
and in Anatolia as early as ~5.6 ka (fig. S1). In
general, phylogenetic relationships among
HBV sublineages within the WENBA clade
do not exhibit a strong geographical structure
(fig. S2), nor do they seem to reflect the mate-
rial culture or genetic profile of the individuals
in which they were found (fig. S6). Further-
more, our phylodynamic reconstruction indi-
cates that after an initial growth phase, the
transmission ofWENBAHBV reached an equi-
librium from ~7.5 to ~3.5 ka (fig. S7). Overall,
this suggests that HBV strains disseminated
by EEFs quickly spread throughout much
of western Eurasia beyond the limits of the

European agricultural expansion, where they
became endemic and continued to circulate
widely across different populations, for several
thousand years. In particular, we do not ob-
serve substantial changes in the HBV genetic
landscape associated with the expansion of
steppe-related ancestry that dramatically al-
tered the genetic profile of Europeans from
~5 ka onward (Fig. 2, fig. S2, and data S1) (37).
Sexual and perinatal transmission have likely
always been the major mechanisms of HBV
infection in humans, but cultural practices
involving contact with blood [such as tattoo-
ing (39)] or nonsexual violent interactions (40)
could also have played a role in the spread of

the virus in the past. In general, our findings
attest to a degree of interconnectivity among
prehistoric populations of different origins,
subsistence modes, and cultures that allowed
for the dissemination of directly transmitted
pathogens.

The collapse of WENBA HBV during the
2nd millennium BCE

After theEarlyNeolithic (8 to 7 ka), theWENBA
HBV lineage prevailed in most parts of west-
ern Eurasia for more than 4000 years (Fig. 3).
However, the latest occurrence of a WENBA
strain in our dataset is dated to ~3.3 ka, after
which this lineage is no longer observed (figs.

Kocher et al., Science 374, 182–188 (2021) 8 October 2021 5 of 7

11000–9000 BP

7500–5000 BP

3000–1500 BP 1500–0 BP

5000–3000 BP

9000–7500 BP

HBV lineage
Mesolithic 1

Anatolian Early Neolithic

Mesolithic 2

WENBA

Genotype A

Genotype D

0

5

10

15

12000 9000 6000 3000 0

Years BP

N
b.

 o
f H

B
V

 g
en

om
es

A

B

C

Fig. 3. Spatiotemporal distribution of ancient western Eurasian HBV strains. (A) Time-calibrated phylogenetic tree (Eurasian branch). Lineages containing
ancient HBV genomes are colored. (B) Histogram showing the number of recovered ancient HBV genomes belonging to each lineage through time. (C) Geographic
distribution of ancient HBV genomes within different time-periods, colored by lineage.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at M

ax Planck Society on O
ctober 11, 2021



S1 and S2). By contrast, genotype A, which we
first observed at the eastern edge of Europe
and in the Near East between ~5 and ~3.5 ka,
still appears after ~2.5 ka, by which time it
had reached the Carpathian Basin in central
Europe. Around the same date, we first ob-
served genotype D in two individuals from the
Italian Alps, as well as in various locations in
the western steppe, before prevailing in large
parts of Europe during the Medieval period.
Thus, it seems that as most WENBA HBV lin-
eages disappeared by the end of the 2nd mil-
lennium BCE, genotypes A and D subsequently
spread from eastern reservoirs to eventually
reachwestern regions that had previously only
harbored WENBA strains (22).
The second half of the 2ndmillennium BCE

bears witness to major cultural shifts in the
archaeological record in western Eurasia,
including the sudden disappearance of tell
settlements in the Carpathian Basin (41), the
expansion of the Urnfield culture and the
increase of military conflicts in large parts
of Europe (42–45), the breakdown of the
Terramare culture in northern Italy (46), and
the so-called Late Bronze Age collapse of most
state societies in the eastern Mediterranean
region and Near East (47, 48). Some of these
societal transformations could have been trig-
gered by underlying phenomena such as cli-
matic events (49) or the spread of epidemic
diseases (50) and were likely associated with
substantial shifts in population densities, trans-
regional networks, andmodes and scales of hu-
manmobility. The observed decline ofWENBA
HBV diversity, as well as our phylodynamic re-
construction (fig. S7), further point to major
changes in epidemiological dynamics over large
parts of western Eurasia during this period.
However, although our data suggests that
new lineages disseminated across Europe
only later on, the lack of observations around
3 ka (Fig. 3) could reflect sampling biases re-
lated to the widespread adoption of crema-
tion practices around that time (42–44) rather
than a decrease of HBV prevalence. Search-
ing for the virus in a large number of system-
atically dated samples across this period could
help to better characterize the process that ul-
timately led to the renewal ofwestern Eurasian
HBV diversity after the end of the 2nd mil-
lennium BCE.

Recent reemergence of the WENBA
HBV lineage

The majority of HBV strains circulating in
western Eurasia today belong to genotypes A
and D (3, 4), thus only reflecting a relatively
recent part of the phylogeographic history of
this virus. However, our results show that de-
spite the seemingly complete disappearance
ofWENBAHBV strains around the end of the
2ndmillenniumBCE, one lineage descending
from this clade has persisted to the present.

The latter gave rise to a group of modern
strains classified as genotype G (Fig. 2 and fig.
S2), a rare, recently described genotype for
which the biology is poorly understood (51).
First discovered in patients from France and
the United States, genotype Gwas later found
in other parts of Europe, the Americas, and
in Asia, making its geographic origin unclear
(52). Despite its wide distribution, genotype G
exhibits remarkably low genetic diversity (53),
suggesting a recent reemergence after thou-
sands of years of low-level persistence. Fur-
thermore, genotype G hasmostly been found
in HIV-positive patients, and phylodynamic
patterns have pointed to a sharp increase of
its dissemination co-occurring with the HIV
pandemic, possibly associated with highly
sexually active groups and injection-drug
users (52).
Genotype G has sometimes been referred

to as “aberrant” because of its distinctive ge-
nomic features: a 36-nucelotide insertion near
the 5′ end of the core gene and two nonsense
mutations in the precore region (51, 54). These
changes inhibit production of the immuno-
tolerogen e antigen (HBeAg), which appears
to be essential for the establishment of a per-
sistent HBV infection, and alter the structure
of the HBV core protein, which may impair
packaging and replication of the viral genetic
material (54, 55). This likely explains why in
the vast majority of cases genotype G occurs
in co-infections with other HBV genotypes,
which can provide the HBeAg and core pro-
tein production functions lacking in genotype
G (54–56). We identified similar insertions
and stop codons in 14 ancient HBV genomes
ranging in age between ~7 and 3.5 ka, which
form the WENBA subclade from which geno-
type G descends (fig. S8). Additionally, most
of these ancient genomes were found in in-
dividuals showing signs of infections with
several HBV variants (fig. S8 and data S2)
(22). Cases ofmixed infectionwere exclusively
found in individuals carrying WENBA HBV
strains, among which they were very frequent
(22 of 83 individuals, likely underestimating
the true frequency). In all cases, both major
and minor strains appeared to belong to
the WENBA lineage, and sequencing data
were partially supporting a ~40–base pair
insertion at the 5′ end of the core gene (table
S3 and data S1).
Therefore, although genotype G is consid-

ered rare today, it seems that the cotrans-
mission of its ancestral form together with
another HBeAg+ WENBA strain was a com-
mon epidemiological feature of HBV between
~7.5 and 3.5 ka. Notably, this functionally
limited variant persisted until today, where-
as the rest of the WENBA HBV diversity
seemingly went extinct. Virologic studies
indicate that genotype G tends to outcompete
HBeAg-producing strains during late HBV in-

fection stages after anti-HBeAg seroconversion
(56–58). Although these short-term selection
patterns parallel the survival of this lineage
over thousands of years, the latter may rather
be related to less deterministic factors. One of
the closest Bronze Age ancestors of genotypeG
was recovered at the archaeological site of
Shagara in the eastern European forest zone
(SGR003) (figs. S1 and S2), a location where
the present-day widespread genotype A was
already circulating (SGR004). Genotype A is
the most common genotype found in mixed
infections with genotype G today (55, 57). The
discovery of ancestral forms of both geno-
types at the same archaeological site, albeit
from different individuals and time periods,
may indicate that this viral association had
already formed during prehistory in eastern
Europe.

Conclusions

This study demonstrates the value of large-
scale paleogenomic analyses for studying the
phylogeographic history of HBV. DNA enrich-
ment allowed us to reconstruct large propor-
tions of more than 100 ancient HBV genomes
from a variety of skeletal tissues, opening pos-
sibilities for future paleovirologic studies. We
show that HBV was already widely present in
humans during the earlyHolocene and that its
phylogeographic history reflects several well-
known human migrations and demograph-
ic events, including the expansion of First
American populations in the Americas and the
Neolithic transition in Europe, but not others,
such as later Bronze Age steppe ancestry ex-
pansions. Furthermore, our results reveal pat-
terns that were not expected on the basis of
human genetic and archaeological data alone,
such as the near complete renewal of western
Eurasian HBV diversity around the end of the
2ndmillenniumBCE. These findings highlight
that the reconstruction of ancient viral diver-
sity has great potential to contribute to our
understanding of human history.
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Ancient DNA traces the history of hepatitis B
Hepatitis B virus (HBV) infections represent a worldwide human health concern. To study the history of this pathogen,
Kocher et al. identified 137 human remains with detectable levels of virus dating between 400 and 10,000 years
ago. Sequencing and analyses of these ancient viruses suggested a common ancestor between 12,000 and 20,000
years ago. There is no evidence indicating that HBV was present in the earliest humans as they spread out of Africa;
however, HBV was likely present in human populations before farming. Furthermore, the virus was present in the
Americas by about 9000 years ago, representing a lineage sister to the viral strains found in Eurasia that diverged
about 20,000 years ago. —LMZ
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