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Abstract1

Various statistical methods have been developed to identify population structure from genetic data, including F-statistics, which measure the
average correlation in allele frequency differences between two pairs of populations. However, the SNPs analyzed with F-statistics are often
limited to those found as part of microarrays or, in the case of ancient DNA, to SNP capture panels, which are those within the common allele
frequency band. Recent advances in sequencing technology increasingly allow generating whole-genome sequencing data, both ancient and
modern, which not only enable querying nearly every base of the genome, but also contain numerous rare variants. Rare variants, with their
more population-specific distribution, allow detection of population structure with much finer resolution than common variants - an opportunity
that has so far been under-exploited. Here, we develop a new statistical method, RAS (Rare Allele Sharing), for summarizing rare allele
frequency correlations, similar to F-statistics but with flexible ascertainment on allele frequencies. We test RAS on both published and simulated
data and find that RAS has better resolution in distinguishing populations, with appropriate ascertainment. Leveraging this, we further develop
the use of RAS to compute ancestry proportions with higher accuracy than existing methods, in cases of closely-related source populations.
We implemented the new statistical methods as an R package and a command line tool. In summary, our method can provide new perspectives
to identify and model population structure, allowing us to understand more subtle relationships among populations in the recent human past.
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Introduction1

Human population structure is shaped by past demographic2

events, which in turn can be inferred using genomic data. For3

example, populations isolated from each other for an extended4

period of time will differ in their allele frequencies due to genetic5

drift (exacerbated in case of small population sizes). On the other6

hand, migrations and admixture tend to equalize allele frequen-7

cies and affect population structure. Therefore, by analyzing8

and modeling population structure we can infer demographic9

processes. To identify population structure and make inferences10

on past demographic events (such as isolation and migration),11

many statistical methods have been developed and established12

in the field.13

One popular approach is F-statistics (Patterson et al. 2012;14

Peter 2016), subdivided into F2, F3 and F4 depending on the15

number of populations involved. All F-statistics can be formu-16

lated as F4, and therefore can measure the average correlation in17

allele frequency differences between two pairs of populations18

(Reich et al. 2009; Lipson 2020), and reflect the overlap between19

two genetic drift paths in a demographic model of the relation-20

ships of all populations involved (Reich et al. 2009; Patterson21

et al. 2012). F-statistics were first proposed in Reich et al. (2009)22

to test for "tree-ness" and compute the admixture proportion23

of focal populations rejecting tree-ness. Hereafter, F-statistics24

have been widely applied in human archaeogenetics, such as25

testing genetic similarity of populations (Raghavan et al. 2014),26

determining ancestry components (Reich et al. 2012; Lazaridis27

et al. 2014) and detecting past admixture events (Patterson et al. 28

2012). 29

One critical advantage of F-statistics, unlike many other meth- 30

ods relying on allele frequency modeling (e.g. momi (Kamm et al. 31

2020), fastsimcoal (Excoffier et al. 2013), dadi (Gutenkunst et al. 32

2009)), is their robustness to some forms of SNP ascertainment. 33

Specifically, it was shown theoretically (and in simulations) that 34

statistical tests based on F-statistics (e.g. for tests for admixture) 35

are unbiased under certain outgroup-directed ascertainment 36

schemes (Patterson et al. 2012). It turns out, empirically, that 37

non-outgroup-directed ascertainments are also close to being 38

unbiased (although see Flegontov et al. (2023)). The ability to an- 39

alyze SNP-ascertained datasets was and still is critical, as Array- 40

Genotyping (e.g. Illumina 650K (Li et al. 2008), Affymetrix Hu- 41

man Origins (Patterson et al. 2012), 1240K (Mathieson et al. 2015)) 42

remain the primary tool for obtaining genome-wide variation for 43

population structure analysis including F-statistics (Novembre 44

and Stephens 2008; Li et al. 2008; Patterson et al. 2012). In the 45

mean time sequencing cost dropped further and larger amounts 46

of whole-genome sequencing datasets were generated in recent 47

years (The 1000 Genomes Project Consortium 2015; Bergström 48

et al. 2020). In the past several years we have also witnessed 49

an explosion of ancient DNA data, in large part based on en- 50

richment techniques on ascertained SNP sets (Haak et al. 2015; 51

Mathieson et al. 2015), but increasingly also based on shotgun 52

sequencing, due to improvements in extraction methods and 53

sequencing technology (Orlando et al. 2021). 54
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2 Rare variants and population structure

The ongoing shift to shotgun sequencing, both in modern1

and ancient DNA analysis, makes it possible to querying nearly2

every base of the genome, allowing the application of advanced3

demographic inference methods, as well as addressing potential4

bias in F-statistics of samples genotyped via SNP arrays or in-5

solution target capture (Flegontov et al. 2023). More importantly,6

whole-genome sequencing data contain many rare variants (The7

1000 Genomes Project Consortium 2015; Bergström et al. 2020),8

which are more likely to be recently derived and can lead to9

novel conclusions on recent demographic history. For exam-10

ple, signals of recent admixture can be emphasized, as different11

African populations share more doubletons (variants shared by12

only two individuals, i.e with allele count two) with each other13

than with East Asians, which is also reflected in the significant14

positive value of D(Chimp, Yoruba; Han, Mbuti) at low derived15

allele frequency in Yoruba, contradicting the phylogeny (Mbuti,16

(Yoruba, Han)) inferred from genome-wide variation (Bergström17

et al. 2020). Rare variation has been recognized as a potential18

tool for identifying fine-scale population structure, especially for19

distinguishing closely related populations. When quantifying20

the affinity between pairs of individuals in the 1000 Genomes21

Project with doubleton sharing, rather than genotype covariance,22

boundaries among populations are more pronounced, and even23

subgroups in populations GBR (from Britain) and CHS (from24

Southern China) can be detected. That is because many more25

doubletons are shared within the same subgroup than between26

different subgroups of the same population (The 1000 Genomes27

Project Consortium 2015). Rare allele methods have also been28

successfully applied to ancestry estimation. When focusing on29

alleles with lower frequency, ancient British populations from30

the Iron Age and Anglo-Saxon period are better distinguished31

by the ratio of alleles they share with Dutch and Spanish, there-32

fore allowing accurate estimation on the Anglo-Saxon British33

ancestry in present-day British populations (Schiffels et al. 2016).34

Similarly, among North American indigenous groups, present-35

day Athabaskans can be distinguished from other groups due36

to recent admixture from Paleo-Eskimos, and therefore can be37

modeled as being admixed between northern First Peoples and38

Paleo-Eskimos (Flegontov et al. 2019).39

However, rare allele methods have not yet been coherently40

formalized in earlier publications. Considering the similarity41

between F-statistics and previous rare allele methods, in this42

article we incorporate rare allele analyses into the definition43

of RAS-statistics, and demonstrate through simulation and em-44

pirical data their ability to outperform ordinary F-statistics in45

detecting recent demographic events, even when the latter are46

applied to whole-genome data. We derive a RAS-based method47

for ancestry decomposition and show that it gives more accurate48

estimates than F-Statistics based ancestry proportions.49

Method50

RAS: Rare allele sharing statistics51

Here, we define a statistic summarizing rare allele frequency52

correlations, RAS, an acronym for "Rare Allele Sharing". RAS-53

statistics are computed on genome-wide biallelic SNPs, similar54

to F-statistics (Patterson et al. 2012) but with ascertainment on55

rare variants.56

In order to define RAS-statistics, we first define the following57

concepts:58

Reference population R A group of individuals that is used to59

ascertain variants within specific allele frequency ranges.60

Outgroup O An individual or group, which is an outgroup to 61

all other individuals/groups involved in the analysis. It is 62

used to define the ancestral allele, and hence polarize alleles 63

into ancestral and derived. 64

Genome length L The number of all positions in the genome 65

considered for analysis. Usually this covers all bial- 66

lelic SNPs in large panels such as 1000 Genomes (The 67

1000 Genomes Project Consortium 2015) and/or HGDP 68

(Bergström et al. 2020). 69

Sample allele frequencies xA A vector of length L representing 70

outgroup-directed derived allele frequencies in population 71

A. We use expression xA,i to refer to sample allele frequency 72

A at position i. 73

Ascertained SNP set M(O, R, fmin, fmax) The set of all posi- 74

tions at which the derived allele frequency (polarized via 75

outgroup O) in reference population R is between fmin and 76

fmax. 77

Ascertained non-missing overlap LM(A, B) the number of 78

sites in M that are non-missing in population A and B. 79

We then define a simple statistic as the correlation of two fre- 80

quencies (for brevity, we write M instead of M(O, R, fmin, fmax)): 81

RAS(A; B) =
1

LM(A, B)
xT

AxB =
1

LM(A, B) ∑
i∈M

xA,ixB,i (1)

Intuitively, this statistic measures the average rate of allele 82

sharing among any pair of haplotypes from groups A and B 83

across all ascertained variants. 84

Indeed, there is a close correspondence of RAS(A; B) and so- 85

called outgroup-F3-statistics, which are more generally defined 86

as 87

F3(A, B; O) =
1
L
(xO − xA)

T(xO − xB).

Using derived allele frequencies polarized by our ascertain- 88

ment outgroup O, and using only monomorphic sites in O, this 89

definition simplifies to xT
AxB as in equation 1. 90

From our basic form of RAS-Statistics (eq. 1), we derive the 91

following RAS-differences, termed RASD: 92

RASD(A1, A2; B) =RAS(A1; B)− RAS(A2; B)
RASD(A; B1, B2) =RAS(A; B1)− RAS(A; B2)

RASD(A1, A2; B1, B2) =RASD(A1; B1, B2)− RASD(A2, B1, B2)

=RAS(A1; B1)− RAS(A2; B1)−
RAS(A1; B2) + RAS(A2; B2)

(2)

Those derived RASD-statistics can be used to test sym- 93

metry or treeness, similar to the widely used F4 or D statis- 94

tics (Patterson et al. 2012). RASD(A1, A2; B) corresponds to 95

F4(A1, A2; B, O), which tests relative sharing between A1 and 96

A2 with respect to B. Similarly, RASD(A; B1, B2) corresponds 97

to F4(A, O; B1, B2). Ultimately, the difference of differences 98

RASD(A1, A2; B1, B2) corresponds to F4(A1, A2; B1, B2). 99

Note that this correspondence to F4 statistics becomes an 100

equivalence in the special case that all sites are non-missing in 101

all considered groups, or only sites non-missing in all groups are 102

considered (e.g. using maxmiss = 1 in the Software qpfstats 103
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Huang, Lamnidis and Schiffels 3

from ADMIXTOOLS2 (Maier et al. 2023), and no allele frequency1

ascertainment is applied (i.e. fmin = 0 and fmax = 1). In the2

more general case relevant here, due to different patterns of3

missing SNPs in ancient samples, our linear combinations in the4

definition of RASD are not equal to F4 even without frequency5

ascertainment.6

Ancestry decomposition7

We can use RAS and RASD statistics to compute ancestry pro-8

portions. Specifically, we model a given target population T as a9

linear sum of source populations {S1, S2, . . . , Sn}, with the coeffi-10

cients {β1, β2, . . . , βn} summing up to 1. Symbolically, we can11

write12

T =
n

∑
i=1

βiSi

n

∑
i=1

βi = 1
(3)

The key idea is to represent the target and sources by their13

shared genetic drift (as estimated using RAS-statistics) with a se-14

lected group of reference populations. Following the nomenclature15

from the popular qpAdm Software (Patterson et al. 2012; Maier16

et al. 2023), we denote target and sources as left populations, and17

references as right populations.18

Specifically, we choose a set of m right populations19

{R1, R2, . . . , Rm}. If T is then admixed as specified in equation20

3, and if there was no gene flow going from the left into the right21

populations (only from right to left, see below for a discussion on22

relaxing this condition), then we can write:23 
RAS(T; R1)

RAS(T; R2)

...

RAS(T; Rm)

 = ∑
i

βi


RAS(Si; R1)

RAS(Si; R2)

...

RAS(Si; Rm)

 (4)

Defining the vectors v = {vj} = {RAS(T; Rj)} and b = {βi},24

and the matrix W = {Wij} = {RAS(Si; Rj)}, we can write this25

as:26

v = WT · b (5)

This would be a simple linear regression model, but we still27

have to satisfy the constraint ∑n
i=1 βi = 1. We therefore first28

write the last element of b as29

βn = 1 −
n−1

∑
i=1

βi

Restricting to a single row j of the equation, we then get30

vj =
n−1

∑
i=1

βiWij +

(
1 −

n−1

∑
i=1

βi

)
Wnj (6)

which in turn becomes31

vj − Wnj =
n−1

∑
i=1

βi(Wij − Wnj) (7)

The differences on both sides of the equation are actually32

RASD-statistics. We define Xij = Wij − Wnj = RASD(Si, Sn; Rj)33

for i = 1, . . . , (n − 1), yj = vj − Wnj = RASD(T, Si; Rj) and 34

a = {β1, . . . , βn−1} can then write 35

y = XT · a (8)

or 36


RASD(T, Sn; R1)

RASD(T, Sn; R2)

...

RASD(T, Sn; Rm)

 =
n−1

∑
i=1

βi


RASD(Si, Sn; R1)

RASD(Si, Sn; R2)

...

RASD(Si, Sn; Rm)

 (9)

which is a simple linear regression equation. The least-square 37

solution of this equation is (see Hastie et al. (2009)): 38

â = (XXT)−1Xy (10)

which is a genome-wide point-estimate of admixture propor- 39

tions. There are two sources of uncertainty/error to consider in 40

this estimation: First, the sampling noise and the finite length of 41

the genome, and second the standard error from the least-square 42

fit itself. We estimate both of these errors using a genome-wide 43

block-Jackknife procedure (Busing et al. 1999) to re-estimate the 44

admixture proportions using equation 10 with each of the blocks 45

removed, and derive the standard error of them. This approach 46

is inspired by the Jackknife implemented in qpAdm and the AD- 47

MIXTOOLS (Patterson et al. 2012) and ADMIXTOOLS2 packages 48

(Maier et al. 2023) 49

The basic decomposition (equation 4) relies on there being no 50

gene flow from left to right populations, only vice versa. This is 51

hardly ever true in real populations. However, in contrast to or- 52

dinary F-Statistics, which is the basis for ancestry decomposition 53

in qpAdm, RAS values are only affected by reverse gene flow if 54

it occurred very recently. This can often be ruled out. But even if 55

not, violations of the no-left-to-right gene flow assumption may 56

affect goodness-of-fit statistics more than the actual ancestry 57

estimates which we focus on here. 58

Implementation of the method 59

All scripts used to process and analyze data, exclusively in 60

the R programming language (Ihaka and Gentleman 1996), 61

are provided within a GitHub repository https://github.com/ 62

huanglei-artificium/RAS_tools, including documentation. 63

Briefly, our tool computes RAS and RASD with flexible ascer- 64

tainment on allele frequency. Besides .geno files, our tool also 65

accepts allele frequency data consisting of two columns repre- 66

senting numerator (nr of alternative alleles) and denominator 67

(nr of non-missing haplotypes) as input. Then we compute allele 68

frequencies for each population and each site, which are then 69

used to i) select sites that fulfill ascertainment conditions, and ii) 70

to compute the actual RAS-statistics on those sites. 71

To compute optional uncertainties based on a blockwise jack- 72

knife estimate (Busing et al. 1999), RAS gets computed block- 73

wise (typically by chromosome), which are then combined to 74

obtain genome-wide statistical values. 75

Multiple statistics, cycling through several populations, and 76

multiple ascertainment conditions are handled efficiently inside 77

our tools, and can be computed in one run. 78
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4 Rare variants and population structure

Simulations1

To illustrate how RAS and RASD perform in contrast to F3 and2

F4 statistics, we devised a simulation scheme that allows for3

varying levels of population structure by tuning migration rates.4

Specifically, we use msprime (Kelleher et al. 2016) to simulate5

a set of nine populations, located in a 3 × 3 grid, each with an6

effective diploid population size Ne = 20, 000 individuals, with7

n = 50 diploid samples drawn from each population. Each pop-8

ulation is connected to its non-diagonal neighboring populations9

through a symmetric two-way per-generation migration rate.10

All the migration rates (m) in the same simulation were uniform,11

and varied across different simulations to produce different de-12

grees of population structure among the simulated populations,13

with the scaled migration rate (4mNe) being 1, 2, 5, 10, 20, 50,14

100, 200, 500, 1000, 2000 and 5000 respectively. Each sample has15

20 chromosomes, each 100Mbp in length. We number our nine16

populations from 0 to 8 following a left-to-right, bottom-to-top17

order, as depicted in Figure 1A. No specific outgroup was simu-18

lated, instead we just used a genome consisting exclusively of19

ancestral alleles as outgroup.20

To assess the population structure in the simulated data, we21

perform the statistical analysis across three different ascertain-22

ment schemes (i) Using all variants in the simulated data, (ii)23

Using only rare variants with different ascertainment conditions,24

(iii) Using only a subset of 1.2M variants with derived allele25

frequency between 0.05 and 0.95, to mimic the 1240K panel26

(Mathieson et al. 2015).27

We chose 10 individuals from each population to act as "test28

individuals" (denoted by Ti), whereas the other 40 individuals29

are then used as References Ri. The ascertainment is therefore30

based on 9 × 40 = 360 reference individuals. For some analysis,31

in order to average sampling noise, we rotated test and reference32

individuals 5 times so that each individual served as a test indi-33

vidual once. The code for running the simulation is available at34

https://github.com/Schiffels-Popgen/RAS_exploration.35

Modern reference data36

For our modern reference data, we chose as a starting point the37

recently released harmonized dataset of 1000 Genomes Project38

(1kGP) and Human Genome Diversity Project (HGDP) (Koenig39

et al. 2024), where a new genotype calling was made based on40

the raw sequencing data from 1kGP and HGDP, with more than41

150 million high-quality variants identified, including a large42

number of rare variants. We chose to focus on the European43

populations in this dataset, which includes five from 1kGP and44

eight from HGDP, in which genetic outliers and relatives closer45

than second-degree were filtered out according to the analysis of46

Koenig et al. (2024) (see Table 1 for the number of individuals for47

each population). We further supplemented this basic dataset48

with three European public datasets with genome-wide allele49

count data: Danish from GenomeDenmark project (Maretty et al.50

2017), Dutch from Genome of the Netherlands (GoNL) project51

(The Genome of the Netherlands Consortium 2014) and Swedish52

from SweGen project (Ameur et al. 2017) (Table 1).53

Even though we focused on Europe, for all the RAS statistics54

regarding real data, we used all African groups in 1kGP and55

HGDP as outgroups, ascertaining to strictly fixed sites within56

Africa.57

We screened 133 million biallelic SNPs from the harmo-58

nized dataset of 1kGP and HGDP for analysis. Variant sites59

in the Danish, Dutch and Swedish datasets were filtered to this60

1kGP+HGDP SNP set, to ensure that our African outgroup is61

available on all analyzed SNPs. We excluded sites with different 62

alternative alleles when joining the datasets. Unless otherwise 63

stated, we used all European populations in Table 1 for refer- 64

ences, which consist of 16 populations and 2184 individuals 65

(4368 sets of haploid chromosomes). Allele frequencies for each 66

site are based on all non-missing individuals. 67

Table 1 Number of haploid copies (2N) of present-day popula-
tions used for analysis

Population
abbr. a

Population Haploids Dataset

CEU Northern and
Western European
ancestry

242 1kGP

FIN Finnish 196 1kGP

GBR British 176 1kGP

IBS Spanish 208 1kGP

TSI Toscani in Italy 206 1kGP

- Adygei 34 HGDP

- Basque 46 HGDP

- French 54 HGDP

- Italian 22 HGDP

- Orcadian 26 HGDP

- Russian 50 HGDP

- Sardinian 54 HGDP

- Tuscan 16 HGDP

DK Danish 40 GenomeDenmark

NL Dutch 998 GoNL

SE Swedish 2000 SweGen

AFR_all All Africans 1978 1kGP+HGDP

a Where available, we use abbreviations in the figures.

Ancient genomes 68

Our ancient dataset consists of 34 individuals from Great Britain 69

with shotgun-sequencing data, 7 dating to the Late Iron Age 70

(LIA) and 27 to the Early Middle Ages (EMA) (Martiniano et al. 71

2016; Schiffels et al. 2016; Gretzinger et al. 2022). We started 72

with alignment files (.bam files) and called variants overlapping 73

with our reference SNPs, using the Majority-Call method with 74

a minimum coverage of 3 and downsampling in pileupCaller 75

(article submitted). We then selected individuals with more 76

than 1 million SNPs overlapping with our reference data set 77

(see above). We used the ancestry decomposition published in 78

Gretzinger et al. (2022), with two major components: CNE ("Con- 79

tinental North European") and WBI ("Western British-Irish"), and 80

labeled individuals whose dominant ancestry (CNE or WBI) is 81

more than 70% as "England_CNE" (N = 17) and "England_WBI" 82

(N = 7). 83
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Results1

Exploring RAS with simulated data2

We first explored, how our RAS-Statistics can distinguish pop-3

ulations from our simulated 3 × 3 grid of connected popula-4

tions (Methods). We chose two corner populations as refer-5

ences, namely population 6 (in the top left, see Figure 1A) and6

population 8 (in the top right) and computed RAS(x; R6) and7

RAS(x; R8) for all test individuals x across all populations. For8

comparison, we also computed F3(O; x, R6) and F3(O; x, R8),9

without any allele frequency ascertainment.10

For low migration rate, both RAS and F3 reveal clearly sep-11

arated clusters of individuals, corresponding to the 9 popula-12

tions (Figure 1A, with populations closer to the references being13

placed high on the respective axis, and populations more distant14

to the references being placed low on the axes (Figure 1A).15

Increasing the migration rate shows shows less clearly de-16

fined clusters in the case of F3, with no apparent structure being17

visible for the highest migration rate tested here (4mNe = 2000)18

(1B and C). In contrast, ascertaining SNPs to be rare with re-19

spect to the reference populations (which here comprise 9 × 4020

individuals, excluding the 9 × 10 test individuals, see Meth-21

ods) reveals structure being visible also at higher migration22

rates. For example, at 4mNe = 100 (Figure 1E), RAS scatter23

plots reveal still well-separated clusters while F3 (Figure 1B)24

already shows considerable overlap between groups. Even at25

4mNe = 2000 (Figure 1F), RAS still shows some power to dis-26

tinguish groups, whereas F3 appears random (Figure 1C). For27

our simulated "1240K" dataset with only 1.2 million common28

variants, structure is substantially less resolved (Supplementary29

Figure S1). With the highest simulated migration rate, even rare30

variation appears quite random (Supplementary Figure S1).31

Following this qualitative assessment of the ability to sep-32

arate closely related groups, we devised a more quantitative33

assessment, by testing for each individual whether it is closest34

to the mean position of their own population or to some other35

population, in which case we consider it misclassified. The mis-36

classification ratio is then the proportion of misclassified test37

individuals relative to all test individuals (using the rotation38

scheme described in Methods, this amounts to 450 tests). As39

expected, RAS performs better in distinguishing populations40

for medium and high migration rates, although at the highest41

migration rate 4mNe = 5000, the improvement is relatively weak42

(Supplementary Figure S2). Specifically, at 4mNe = 50, 100, 200,43

while F3 statistics (for both "all sites" and 1240K) start to mis-44

classify, RAS can still distinguish the test individuals with no or45

little error. At low migration rates 4mNe = 1, 2, note that RAS46

estimates are noisier than the corresponding F3-estimates, due47

to fewer shared rare variants: Low levels of migration make it48

difficult for variants to spread between populations, especially49

for rare variants between geographically distant populations50

(e.g., populations 0, 1 and 2 with respect to populations 6 and 8),51

so that the signal of rare allele sharing between them becomes52

particularly noisy.53

Application to real data54

Turning to real data, we first analyzed present-day European55

genetic diversity. Specifically, we used the five European pop-56

ulations from the 1000 Genomes Project (1kGP) as references57

(The 1000 Genomes Project Consortium 2015) and eight Euro-58

pean populations from the HGDP project as test individuals59

(Bergström et al. 2020). We then quantified the affinity between60

1kGP European populations and each European HGDP individ-61

ual with outgroup-F3 and RAS (Figure 2). FIN (Finnish) and IBS 62

(Spanish) from 1KGP are selected as references because they are 63

relatively different geographically and genetically. Both whole 64

genome and 1240K SNP sets reveal differential affinities of the 65

HGDP populations with respect to these references (Figure 2B 66

and C). For example, Russian and Sardinian groups are closest 67

to FIN or IBS references, respectively. Ascertaining on rare al- 68

lele frequencies in the references with RAS, these differences 69

become substantially larger (Figure 2A). In particular, Russian 70

and Basque groups from the HGDP share substantially more 71

rare alleles with either FIN or IBS, indicating recent shared an- 72

cestry between Russian and Finnish, and between Basque and 73

Spanish. In addition, there are clearer boundaries for some iso- 74

lated populations, such as Sardinian and Orcadian. All groups 75

are more clearly separated with RAS than with un-ascertained 76

variants. 77

We next turned to ancient DNA to explore the potential of 78

rare variants to analyze ancient population structure. Specifi- 79

cally, we again used the present-day 1kGP reference groups and 80

measured RAS and F3 to a set of ancient genomes from England 81

(Gretzinger et al. 2022) for which whole-genome sequencing data 82

is available. Without ascertainment, these two groups do not 83

appear to separate clearly on either all sites or 1240K subset (Fig- 84

ure 2B,C). In particular, WBI individuals are distributed among 85

the entire range of CNE individuals. In contrast, we find that 86

in our RAS analysis (Figure 2A), the WBI individuals fall closer 87

to present-day French compared to samples with CNE ances- 88

try, with all WBI individuals being closer to IBS than to FIN, as 89

indicated by the dashed line in Figure 2A. 90

Testing for population structure with RASD 91

A formal test of population structure is a test for symmetry 92

between two groups with respect to a reference group. For 93

classical F-Statistics, this is done through F4-Statistics, which are 94

essentially differences of F3-Statistics, to statistically quantify 95

differential affinities as deviations from symmetry. Analogously, 96

we defined RASD(A1, A2; B1, B2)-Statistics (Methods), which 97

tests whether A1 and A2 are differentially related to B1 and B2. 98

Here, we explore the following form: 99

RASD(England_CNE, England_WBI; R1, R2), where the 100

first two slots are cycling through ancient individuals from 101

Britain with dominant CNE (n = 17) or WBI (n = 7) ancestry, 102

respectively, and the last two slots are cycling through various 103

present-day reference populations. We evaluated the results 104

using the Z-Score (i.e. the statistical deviation from zero), using 105

RASD at different ascertainment conditions and corresponding 106

F4 at 1240K and all sites (Figure 3). When applying RASD, as 107

long as it is not restricted to extremely rare alleles (up to 0.2%), 108

the ability to distinguish between CNE and WBI is overall better 109

than using F4, with Z scores even greater than 10 for some 110

combinations. When comparing different reference populations, 111

using NL (Dutch) and SE (Swedish) generally resulted in better 112

discrimination than using FIN (Finnish). This suggests that 113

the immigrants into Britain from continental Europe during 114

Early Middle Age were genetically closer to present-day Dutch 115

or Swedish, consistent with the findings from Gretzinger et al. 116

(2022). 117

In order to explore the genetic change in Early Middle Age 118

Britain, we performed a systematic analysis by grouping individ- 119

uals with CNE (n = 17) and WBI (n = 7) ancestry respectively 120

and comparing them with present-day European populations, 121

under different ascertainment conditions (Figure 4). 122
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Figure 1 Outgroup-F3 and RAS statistics on test individual x and a specific reference population (R6 or R8) at different migration
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For the 1240K panel and all sites, we observe non-significant1

positive Z scores for all European reference populations, al-2

though some Northern European populations, such as SE3

(Swedish), NL (Dutch) and FIN (Finnish) have relatively bet-4

ter ability to distinguish CNE and WBI ancestry (Figure 4). In5

contrast, with RASD-statistics, the difference between CNE and6

WBI, represented by Z score, becomes much more pronounced7

at low derived allele frequency. Among those present-day Eu-8

ropean populations, SE (Swedish), NL (Dutch), CEU (Northern9

and Western European ancestry) and FIN (Finnish) have bet-10

ter ability to distinguish CNE and WBI, suggesting that these11

present-day populations are most closely related to the actual12

source that migrated into early medieval Britain, in line with13

previous conclusion that the immigrants were from Northern14

Europe (Gretzinger et al. 2022).15

Rare alleles can even provide more information about popu-16

lation history at different points in the past, which is reflected17

by the results of RASD-statistics at different derived allele fre-18

quency cutoffs. For French, TSI and IBS, their Z scores are much19

higher at very low frequency 0 - 0.2% than at 0 - 0.6%, which is20

due to recent low-level gene flow within the European continent21

making present-day Southern Europeans share increasing num-22

ber of rare alleles with CNE ancestry, rather than WBI ancestry.23

The Z scores of French and TSI at 0 - 0.2% are even slightly higher 24

than those of FIN, reflecting that the magnitude of recent gene 25

flow may be highly dependent on geography, since Finnish and 26

the estimated location of CNE ancestry are on the opposite sides 27

of the Baltic Sea. However, the Z score of FIN reaches its peak 28

at maximum cutoff 1.4% and still remains significant until max- 29

imum cutoff 3.8%, suggesting that the gene flow between the 30

CNE ancestry and the ancestor of Finnish occurred in the more 31

distant past, probably mediated through a population closely 32

related to present-day Swedish. 33

We have compared the ancient British individuals with 34

mostly CNE or WBI ancestry. However, the actual CNE ad- 35

mixture in EMA Britain was like a spectrum, with varying pro- 36

portions among different individuals (Gretzinger et al. 2022). 37

As F-statistics are linear under a gradient of admixture compo- 38

nents, so are RAS and RASD. When applied to real data, there 39

is a strong correlation between RAS and RASD-estimates, and 40

the actual ancestry proportion of a sample. Therefore, we per- 41

formed RASD and F-statistics on each EMA British individual 42

by comparing it to a pair of present-day European reference 43

populations that are able to distinguish EMA British individuals. 44

We then computed the correlation between our estimates and 45

the high-resolution CNE ancestry estimated by supervised ad- 46
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Figure 2 RAS and outgroup-F3 statistics on European indi-
vidual x and FIN/IBS with error bars of ±1 standard devia-
tion (SD). Modern European individuals are distinguished
by colors representing different populations in HGDP; an-
cient British individuals are marked black and distinguished
by shapes representing different ancestries. SNP panels are
based on the harmonized dataset of 1kGP and HGDP with the
following filtering: monomorphic in all 1kGP Africans and de-
rived allele frequency less than 2% in all 1kGP Europeans (A);
all sites (B); 1240K sites (C). The dash line indicates the equal
relationship to FIN and IBS. FIN: Finnish; IBS: Spanish.

mixture using thousands of present-day Europeans as reported1

in Gretzinger et al. (2022) (Figure 5; Supplementary Figure S3).2

At specific fmax, such as 0.6% and 1%, our RASD estimates using3

any of Finnish (FIN), Netherlands (NL) or Swedish (SE) in con-4

trast to Spanish (IBS), show a higher correlation to the reported5

CNE ancestry estimates than F4-values on 1240K, indicating a6

better resolution in distinguishing EMA British individuals with7

rare alleles, and potentially a more accurate estimation on CNE8

ancestry from new samples provided the RASD statistical val-9

ues. Those results suggest a potential method for more accurate10

ancestry decomposition using RAS-statistics with appropriate11

ascertainment on rare alleles.12

Decomposing ancestries using linear combinations of13

RAS14

Motivated by the correlation between RAS-Statistics and an-15

cestry components, we devised a new method to decompose16

ancestry components based on RAS (see Methods).17

Briefly, every left population (i.e. the target and the sources)18

has a specific profile of rare allele sharing with each of the right19

populations, represented by a multi-dimensional vector. We20

then model the target profile as a linear combination of source21

profiles, with the coefficient reflecting the admixture proportion.22

We tested this new method on our simulated data, focusing23

on two-component models. According to the simulation scheme24

(Method), some populations can be represented as admixtures25

0
5
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1240K all sites 0.2 0.6 1.0 1.8 3.0
Max. Freq. (%)

Z

FIN, IBS
NL, IBS
SE, IBS

RASD (England_CNE, England_WBI; R1, R2)

Figure 3 Z score distribution of
RASD(England_CNE, England_WBI; R1, R2) using dif-
ferent SNP panels, shown in each bar with jitter. The
ascertained cases are represented in numbers, which are pmax
(in percentage) in 1kGP and HGDP European populations
plus the Dutch, Danish, and Swedish populations. Different
colors represent different reference population pairs (R1, R2).
Results with Z < 3 are indicated as crosses and with Z > 3
with circles.

of other populations. Specifically, we aim to model population 26

4 (in the middle of the grid) as an admixture of population 0 27

(bottom-left) and population 8 (top-right). We expect for all 28

migration rates a 50%/50% decomposition, due to symmetry. 29

We compared our ancestry estimates based on RAS with 30

the expected values and defined two types of error: (A) the 31

absolute difference between our estimate and the theoretical 32

value of 0.5, denoted as "true error"; (B) the standard error of our 33

estimate based on a chromosome-wise jackknife (Busing et al. 34

1999), denoted as "self error". 35

The results reveal that at high migration rates, both types 36

of errors are substantially lower for our RAS-based ancestry 37

estimate compared to F3-based estimates on 1240K or even on 38

all sites (Figure 6). Note that towards lower migration rates, 39

we observe a turning point (around 4Nm=100, Supplementary 40

Figure S4), where all sites and even 1240K are performing subtly 41

better than rare variants, although at a very low level of error, 42

which we attribute to a lower number of shared rare variants 43

for low migration rates. Therefore in real cases, it’s appropriate 44

to use F-statistics when populations are highly differentiated, 45

while RAS fills the gap where F-statistics lose resolution. 46

Discussion 47

We have defined RAS, a statistical method based on rare al- 48

lele sharing between populations, and demonstrated that rare 49

variation provides powerful means of identifying fine-scale pop- 50

ulation structure and revealing unique population histories that 51

common alleles may not capture. For both simulated and em- 52

pirical data, we observe a signal reinforcement of recent demo- 53

graphic events, reflected in the much stronger allele sharing for 54

rare alleles (Figure 1D,E,F; 2A; 3; 4), compared to common alleles 55

and even the whole genome. 56

Investigating population structure is one of the primary goals 57
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of population genetic analyses involving ancient and modern1

genomes. Such studies have greatly advanced our understand-2

ing of historical human populations, and their migration and3

admixture (Nielsen et al. 2017; Skoglund and Mathieson 2018;4

Liu et al. 2021; Stoneking et al. 2023). Especially in recent years,5

studies involving larger sample sizes have revealed more de-6

tailed historical demographic events (Lazaridis et al. 2022; Al-7

lentoft et al. 2024; Antonio et al. 2024; McColl et al. 2025). In these8

studies, 1240K remains the primary ascertainment scheme for9

exploring genome-wide population structure. While increasing10

sample sizes help with existing methods, we here show that11

different ascertainment approaches and in particular a focus on12

rare variants can more dramatically improve resolution, such13

as the clearly demarcated Russian and Basque populations (Fig-14

ure 2A). Even for ancient DNA, by embracing an ascertainment15

scheme strictly in present-day data, the ability to distinguish be-16

tween populations is also significantly increased, as exemplified17

here by differentiating between CNE and WBI ancestries (Fig-18

ure 3;4;5). Surprisingly, the resolution for rare variants is even19

higher than using all variants (Figure 2;3), which further empha-20

sizes the importance of ascertaining rare alleles for population21

structure analysis.22

Larger sample sizes have a more direct impact on the reso-23

lution of our method, compared to most traditional tools based24

on common alleles such as F-statistics and PCA. The rare alleles25

ascertained from reference populations generally also have low26

frequencies in the test populations. Therefore, the relative error27

of their allele frequency estimates is larger than that of common28

alleles. This highlights the role of increasing sample sizes in29
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Figure 5 (A) The colored lines are the correlations between
RASD(England_EMA; x1, x2) and estimates of CNE ances-
try of each England_EMA individual (from Gretzinger et al.
(2022)), under different pmax (in percentage) in present-day Eu-
ropeans. The dashed lines are the correlations of correspond-
ing F4-statistics on 1240K. (B) RASD(England_EMA; NL, IBS)
with error bars of ±1 SD, ascertained on sites with 0 – 0.6% de-
rived allele frequency in present-day Europeans.

improving the accuracy of rare allele frequency estimates, and 30

therefore the resolution of RAS statistics. Here, we have com- 31

pared CNE and WBI ancestries and observed higher Z scores 32

when grouping individuals (Figure 4) rather than analyzing 33

them individually (Figure 3). For simulated data, we also group 34

individuals to reduce noise (Figure 6). 35

In order to get a more complete picture of rare genetic varia- 36

tion, we have used shotgun data for ancient samples. We did not 37

use capture data, due to the far lower amount and uneven distri- 38

bution of rare alleles, although the raw sequence data still cover 39

some neighboring rare allele sites. Fortunately, recent advances 40

in sequencing technology have made shotgun sequencing more 41

efficient and cost-effective, and shotgun data are becoming in- 42

creasingly available for ancient DNA studies (Maisano Delser 43

et al. 2021; Mallick et al. 2024), which coincides with the require- 44

ment of RAS for a larger sample size. The increasing availability 45

of shotgun data is transforming the field of archaeogenetics as a 46

whole by offering more detailed insights into human population 47

history. 48

Western Eurasia serves as a prime example: Through the 49

spread of early European farmers from the Near East (Lazaridis 50

et al. 2014), and the movement of Indo-European speaking 51

groups from the Eurasian steppe (Haak et al. 2015), populations 52
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Figure 6 Error estimate for modeling population 4 as an ad-
mixture of population 0 and 8. We rotated test individuals for
5 times and calculated the average of errors for 5 parallel tests.

that might have been more genetically distinct have gradually1

become more similar, leading to an overall more homogeneous2

genetic structure across Europe, which may have remained sta-3

ble since the Iron Age (Antonio et al. 2024). Nonetheless, regional4

differences still persist, which are shaped by local history: during5

the Roman period, while Northern provinces maintained higher6

levels of local continuity, Southern sites absorbed the influences7

from Northern Africa, the Near East, and Eastern European8

Slavic groups, displaying more genetic variability (Antonio et al.9

2019; Olalde et al. 2023); Celtic and Germanic tribes occupying10

different regions of Europe had different genetic profiles due to11

their different migration routes and interactions with different12

neighboring groups (McColl et al. 2025). Method development13

has so far relied on haplotype based analysis, such as IBD-based14

inference (McColl et al. 2025) or ancestral recombination graph15

inference (Speidel et al. 2025). In the future, using RAS, we will16

be able to additionally study rare variants that may be over-17

looked by other methods and expect more insights on subtle18

demographic events from these comprehensive datasets.19

In our final demonstration, we have implemented a new20

way of estimating ancestry proportions, showing a better per-21

formance of RAS-based compared to ordinary F-statistics-based22

estimates (Figure 6). In the framework of F-statistics, there are ex-23

tensions based on F4 matrices: qpWave for testing symmetry or24

external sources, and qpAdm for testing hypothetical admixture25

modeling (Patterson et al. 2012). In future work, RAS-statistics26

may be used similarly to develop formal tests for symmetry and27

admixture.28
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Supplementary Figure Captions43

Figure S1: Outgroup-F3 statistics on test individual x and a44

specific reference population (R6 or R8) at different migration45

rates on 1240K SNP panel. The migration rates (4mNe) used in46

the simulation are 1 (A), 100 (B) and 2000 (C). Test individuals x47

are distinguished by colors representing different populations,48

shown in legend in (A), which also includes the schematic of49

simulated population migration.50

Figure S2: The misclassification rate for different migration51

rates.52

Figure S3: RASD(England_EMA; FIN, IBS) (A) and53

RASD(England_EMA; SE, IBS) (B) with error bars of ±1 SD,54

ascertained on sites with 0 – 0.6% derived allele frequency in55

present-day Europeans.56

Figure S4: Error estimate for modeling population 4 as an57

admixture of population 0 and 8. We rotated test individuals58

for 5 times and did 5 parallel tests. The coordinates of errors are59

logarithmic.60
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